Module I: Manufacturing Processes and Classification

1. Types of Manufacturing Processes

Additive Processes

- **Definition**: Build objects by adding material layer by layer, commonly called 3D printing.
- **Methods**: Includes processes like Fused Deposition Modeling (FDM), Stereolithography (SLA), Selective Laser Sintering (SLS), and others.
- **Materials**: Predominantly plastics and metals, as well as ceramics, photopolymers, and composites [1] [2].

Subtractive Processes

- **Definition**: Create parts by removing material from a solid block (workpiece) through machining, drilling, milling, grinding, etc.
- **Methods**: Examples are CNC machining, laser cutting, waterjet cutting, and electrical discharge machining (EDM) [3] [4].
- Materials: Wide variety, including metals, plastics, wood, foam, glass, and stone [3] [4].

Shaping/Forming Processes

- **Definition**: Change the shape of materials without adding or removing material.
- **Methods**: Includes casting, forging, stamping, extrusion, drawing, injection molding, and blow molding [5] [6].
- Materials: Typically metals, polymers, and ceramics.

Process Type	What Happens	Typical Materials	Notable Methods
Additive	Material added layer-wise	Plastics, metals, ceramics	3D printing (FDM, SLA)
Subtractive	Material removed	Metals, plastics, wood	CNC, laser cutting
Shaping/Forming	Material deformed/formed	Metals, polymers	Casting, forging, molding

2. Relative Advantages and Limitations

Attribute	Additive Manufacturing	Subtractive Manufacturing	Shaping/Forming
Complexity of geometry	Very high ^[2] ^[7]	Moderate	Depends on method
Tolerance/precision	Moderate	High [3] [7] [4]	Moderate to high (varies)
Surface finish	Generally rougher	Very smooth [7] [4]	Moderate to high (polishing possible)
Material efficiency	Minimal waste (efficient)	High waste (chips, scrap) [4]	Low to moderate (depends on process)
Part strength	Anisotropic (layered)	Isotropic (bulk material)	Typically good
Production speed	Slow for large volumes [1]	Fast for batch production	Fast (especially for mass production)
Cost (low volume)	Generally lower	Moderate to high	High initial setup, low unit cost
Cost (high volume)	Higher	Lower ^[3] [4]	Very low per unit
Customization	Excellent [7] [2]	Limited	Moderate
Examples	Prototyping, complex parts	Functional parts, molds	Automotive panels, bottles, engine blocks

3. Inter-dependency of Geometry, Material, and Process

- **Geometry**: Certain shapes—like intricate internal channels or overhangs—may only be feasible using additive techniques, while precise holes and threads are better achieved with subtractive methods [7] [8].
- **Material**: Not all materials are suitable for all processes; for example, some metals may be too hard for traditional shaping, or some polymers may not withstand certain additive processes [3] [4].
- **Process**: The chosen process influences the final geometry and available material options, dictating achievable tolerances, strength, and finish [9].
- **Interplay**: Selecting an optimal combination is essential for manufacturing feasibility, performance, and cost control [10] [11].

4. Effect on Product Quality and Cost

Quality

- Additive processes can result in lower surface finish and dimensional accuracy compared to subtractive or shaping techniques [7] [8].
- Shaping/forming may introduce residual stresses or variation in wall thickness, affecting mechanical performance.
- Proper process selection reduces defects and increases product consistency [12] [13].

Cost

- Additive manufacturing is cost-effective for low-volume, customized, or highly complex parts, but less so for mass production.
- Subtractive methods excel in precision but may incur higher costs from material waste and longer setup times for complex parts.
- Shaping/forming processes often have high initial tooling costs, amortized over large production runs [13] [12].

5. Part Design for Manufacturability (DFM)

- **Material Selection**: Choose materials compatible with the intended process and desired properties (strength, cost, machinability, etc.) [14] [10].
- Geometry Optimization:
 - Avoid excessively tight tolerances unless necessary.
 - Simplify features and use standard sizes/components where possible [10] [14] [15].
- Process Adaptation: Design features that align with process strengths—for example, orienting holes for easier drilling in CNC, or minimizing unsupported overhangs in 3D printing [15] [10].
- **Assembly Considerations**: Incorporate features that allow for easy assembly, alignment, or integration with other components.
- **Cost Efficiency**: Balance function, manufacturability, and production costs.
- Compliance: Ensure parts meet safety and regulatory standards by design.

6. Process Selection Criteria

Process selection depends on several factors:

- Material Type
- Part Complexity and Geometry
- Volume of Production (prototyping vs. mass production)
- Required Tolerances and Surface Finish
- Mechanical Properties Needed
- Tooling and Setup Costs
- Lead Time and Flexibility
- Environmental and Regulatory Compliance

Example: Using injection molding for high-volume plastic parts with simple geometry is economical, while intricate, low-volume parts benefit from additive processes despite higher perunit costs [15] [1] [3].

Summary Table: Guidelines for Process Selection

Criteria	Additive	Subtractive	Shaping/Forming
Volume	Low-medium	Low-medium-high	Medium-high
Complexity	Very high	Moderate	Process-limited
Tolerances	Moderate	Very high	Moderate-high
Cost (setup)	Low	Moderate	High
Material waste	Minimal	High	Moderate
Flexibility	High	Moderate	Low
Lead time	Short	Moderate	Long (tooling phase)

By carefully understanding the classification, strengths, and trade-offs of each manufacturing process, engineers and designers can optimize for quality, cost, and manufacturability, creating products that meet performance goals and market demands [3] [1] [8].

- 1. https://www.3ds.com/make/solutions/blog/additive-vs-subtractive-manufacturing
- 2. https://www.techzone360.com/topics/techzone/articles/2019/09/09/443185-3-types-manufacturing-ad/ditive-subtractive-forming.htm
- 3. https://formlabs.com/global/blog/additive-manufacturing-vs-subtractive-manufacturing/
- 4. http://www.minaprem.com/machining/introduction/additive-manufacturing-subtractive-manufacturing-pros-cons-applications/
- 5. https://testbook.com/mechanical-engineering/types-of-manufacturing-processes
- 6. https://sparks.learning.asu.edu/videos/types-of-manufacturing-processes-explained
- 7. https://www.medicaldevice-network.com/contractors/manufacturing/protomatic-medical/pressreleases/
 sylvaractive-medical/pressrelease
- 8. https://xometry.pro/en/articles/subtractive-additive-manufacturing/
- 9. https://ris.utwente.nl/ws/portalfiles/portal/89460575/Murtezaoglu2018geometry_based.pdf
- 10. https://www.gdandtbasics.com/design-for-manufacturability/
- 11. https://core.ac.uk/download/287648543.pdf
- 12. https://sciendo.com/es/article/10.2478/czoto-2024-0028
- 13. https://www.matec-conferences.org/articles/matecconf/pdf/2021/12/matecconf_mse21_05008.pdf
- 14. https://www.nicoletplastics.com/8-factors-in-plastic-part-design-for-manufacturability/
- 15. https://www.mfg.com/blog/design-for-manufacturability/